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CASH: Topics - People

Optimized (software/hardware) compilation for HPC software
with data-intensive computations.
 Means: dataflow IR, static analyses, optimisations,
simulation.
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Software needs safety and performance

I Programs crash because of array out-of-bounds accesses,
complex pointer behaviour, . . .
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Software guarantees, how?

• Development processes: coding rules, . . .

• Testing: do not cover all cases.

• Proof assistants: expensive.

I Static analysis of programs.

6 / 50



Outline

Motivations
Static analyses, examples
Static analysis of software, how?

Abstract Interpretation 101

Abstract Interpretation for optimising compilers
Example 1: a scalable analysis for pointers
Example 2: array bound check elimination
Impact on compiler optimisation pathes

Conclusion

7 / 50



Goal: safety 1/2

Prove that (some) memory accesses are safe:

int main () {

int v[10];

v[0]=0;

return v[20];

}

3
7

I This program has an illegal array access.
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Goal: safety 2/2

Prove program correctness/absence of functional bug:

void find_mini (int a[N], int l, int u){

unsigned int i=l;

int b=a[l]

while (i <= u){

if(a[i]<b) b=a[i] ;

i++ ;

}

// here b = min(a[l..u])

}

I This program finds the minimum of the sub-array.
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Goal: performance 1/2

Enable loop parallelism:

void fill_array (char *p){

unsigned int i;

for (i=0; i<4; i++)

*(p + i) = 0 ;

for (i=4; i<8; i++)

*(p + i) = 2*i ;

}

Parallel
loops

p p+ 7
p+ 3 p+ 4

I The two regions do not overlap.
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Goal: performance 2/2

Enable code motion:

void code_motion(int* p1 , int *p2, int *p){

// ...

while(p2 >p1){

a = *p;

*p2 = 4;

p2 --;

}

}

hoist!

I If p and p2 do not alias, then a=*p is invariant.
I Hoisting this instruction saves one load per loop.
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Proving non trivial properties of software

• Basic idea: software has mathematically defined
behaviour.

• Automatically prove properties.

Acceptable
Behaviours

Program

(verif) No crash

(compil) Optimisable
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There is no free lunch
i.e. no magical static analyser. It is impossible to prove

interesting properties:
• automatically
• exactly
• on unbounded programs

I Abstract Interpretation = conservative approximations.
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Computing (inductive) invariants

init

loop

end

x := 0

x ≥ 100

x ≤ 99

→ x++

I {x ∈ N, 0 ≤ x ≤ 100} is the most precise invariant in
control point loop.
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Problems and solution

We want to:

• Compute infinite sets.

• In finite time.

I How?

• Approximate sets (abstract domains), compute in this
abstract world.

• Extrapolate (widening).
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Main ingredient: abstract values
Idea: represent values of variables:

Rpc ∈ P(Nd)

by a finite computable superset R ]
pc :

y

xxx

y y

I And compute such abstract values for each control point.
I How? mimic the program operations

Nd × pcs → Nd × pcs

by their abstract versions.

There is also this magical widening stuff, let’s forget it in this talk
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Example (Pagai, Verimag)

see http://pagai.forge.imag.fr
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Other famous AI tools

• Frama-C: “Evolved Value Analysis”.

• Astree: originally designed for safety critical C Compiled
from Scade (synchronous programming).

• Polyspace (Mathworks).
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Complexity in Abstract Interpretation

Classical abstract interpretation analyses:

• Information attached to (block , variables).

• A new information is computed after each statement.

• Abstract operations are sometimes costly.

I For the polyhedral abstract domain, the complexity is
3EXP.
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Challenges in Abstract Interpretation

• Precision of the abstract domain.

• Thousands, millions of lines of code to analyze.

• Static analyzers and compilers are complex programs
(that also have bugs).

I Growing need for simple specialized analyses that scale
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Credo: future of Abstract Intepretation

• Focus more on applicability, and less on expressivity.

• Scale and demonstrate that it scales.

• For general-purpose programs.

I and use techniques from other communities (optimization,
model-checking, logic, rewriting)
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Safe compilation?

• Correct-by-construction non-optimising compilers:
Lustre, Scade.

• Translation validation: specialized proof of the generated
code.

• Compcert.

I An evolution toward more trustable compilers. But what
about code optimisation?
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Motivation

Classical analyses (and optimisation) inside (production)
compilers:

• Apart from classical dataflow algorithm, often syntactic.

• Usual abstract-interpretation based algorithms are too
costly.

• Expressive algorithms: rely on “high level information”.

I Need for safe and precise quasi linear-time algorithms at
low-level.

I Illustrations in the rest of the talk.
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Some contributions

• Abstract domains/iteration strategies for numerical
invariants [SAS11], [OOPSLA14].

• Applications to memory analysis [OOPSLA14], just in
time compilers [WST14].

• Pointer analysis with “sparse” abstract interpretation
[CGO16] [CGO17] [SCP17].

Collaborations with M. Maalej, F. Pereira and his team at UFMG, Brasil
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Less than information for pointers [CGO17,SCP17]

void partition(int *v, int N) {

int i, j, p, tmp;

p = v[N/2];

for (i = 0, j = N - 1;; i++, j--) {

while (v[i] < p) i++;

while (p < v[j]) j--;

if (i >= j)

break;

tmp = v[i];

v[i] = v[j];

v[j] = tmp;

}

}

v[i] = *(v+i)

... ...

v + i v + j

• Range information is not sufficient to disambiguate v[i]
and v[j].

• We need to propagate relational information.
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Our setting for scaling analyses

Classical abstract interpretation analyses:

• Information attached to (block , variable).

• A new information is computed after each statement.

Sparse analyses ⇒ Static Single Information (SSI)
Property [Ana99]:

• Attach information to variables.

• The information must be invariant throughout the live
range of the variable.

I A simple assignment breaks SSI!
I Work on suitable intermediate representations
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Scaling analyses: program representation 1/2

Static Single Assignment (SSA) form: each variable is
defined/assigned once.

void partition(int *v, int N) {

int i, j, p, tmp;

p = v[N/2];

for (i = 0, j = N - 1;; i++, j--) {

while (v[i] < p) i++;

...

}

. . .
i = 0

. . .

. . .

. . .

i = i + 1 ...

...

I Sparse storage of value information (one value range per
variable name).
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Scaling analyses: program representation 2/2

Within SSA form, tests information cannot be propagated!

void partition(int *v, int N) {

...

if (i >= j)

break;

tmp = v[i];

v[i] = v[j];

}

(i ≥ j)?

• iF = σ(i)
jF = σ(j)
vi = v + iF
tmp = ∗vi
vj = v + jF

∗vi = ∗vj
. . .

False

I i ≥ j is invariant nowhere.

I The σ renaming (e-SSA) enables to propagate “iF < jF”.
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Scaling analyses: relational information

Recall the SSI setting:

• Information must be invariant throughout the live range
of the variable. 3

• Attach information to variables (and not blocks).

I Work on semi-relational domains, for instance:

• Parametric ranges [OOPSLA14] x 7→ [0,N + 1]

• Pentagons [LF10]: x 7→ {u, t} means u, t ≤ x .
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Contributions on static analyses for pointers

(with Maroua Maalej) [CGO16, CGO17, SCP17]

• A new sequence of static analyses for pointers.

• Based on semi-relational sparse abstract domains:
• In CGO’16: p 7→ loc + [a, b].
• In CGO’17: adaptation of Pentagons.

• Implemented in LLVM.

• Used as oracles for a common pass called
AliasAnalysis.

• Experimental evaluation on classical benchmarks.
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Experimental results [SCP17]
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• Comparison with LLVM basic alias analysis.
• Our sraa outperforms basicaa in the majority of the tests.
• The combination outperforms each of these analyses

separately in every one of the 100 programs.
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Contribution [OOPSLA’14]

• A technique to prove that (some) memory accesses are
safe :
• Less need for additional guards.
• Based on abstract interpretation.
• Precision and cost compromise.

• Implemented in LLVM-compiler infrastructure :
• Eliminate 50% of the guards inserted by AddressSanitizer
• SPEC CPU 2006 17% faster
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A bit on sanitizing memory accesses

Different techniques : but all have an overhead.

Ex : Address Sanitizer

• Shadow every memory allocated : 1 byte → 1 bit
(allocated or not).

• Guard every array access : check if its shadow bit is valid.
I slows down SPEC CPU 2006 by 25%

I We want to remove these guards.
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Green Arrays: a set of sparse analyses 1/2
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Green Arrays: a set of sparse analyses 2/2
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Experimental setup
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Percentage of bound checks removed
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Runtime improvement

43 / 50



Outline

Motivations
Static analyses, examples
Static analysis of software, how?

Abstract Interpretation 101

Abstract Interpretation for optimising compilers
Example 1: a scalable analysis for pointers
Example 2: array bound check elimination
Impact on compiler optimisation pathes

Conclusion

44 / 50



Some comments on the methodology

LLVM compiler:

• comes with a test infrastructure and benchmarks.

• analysis and optimisation passes log information.

• you can add your own pass, but where?

I Evaluating the impact of a given analysis is a nightmare!
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Impact on LLVM code motion 1/2

Loop invariant code motion (LICM):

void code_motion(int* p1 , int *p2, int *p){

// ...

while(p2 >p1){

a = *p;

*p2 = 4;

p2 --;

}

}

hoist!

I If p and p2 do not alias, then a=*p is invariant.

46 / 50



Impact of our analyses (excerpt) 2/2

Program #Inst #moved
O3 O3+our analysis (CGO16)

fixoutput 369 1 5
compiler 3515 0 0
bison 15645 165 179
archie-client 5939 0 0
TimberWolfMC 98792 1287 1447
allroots 574 0 0
unix-smail 5435 3 3
plot2fig 3217 3 3
bc 10632 18 19
yacr2 6583 144 190
ks 1368 8 11
cfrac 7353 5 6
espresso 50751 301 398
gs 55281 20 X

More in Maroua Maalej’s thesis.
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Summary

Static analyses for compilers:

• Application domain: code optimisation.

• Adaptation of abstract interpretation algorithms inside
this particular context.

• Algorithmic and compilation techniques to scale.

• Future work: more relational domains (and data
structures).
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Take home message

• Code optimisation are good applications for static
analyses/formal methods!

• They have to be thought in terms of scaling as well as
precision.

I Sparse analyses are the key but they still have to be
invented/redesigned.
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