
Experiences in designing

scalable static analyses
LOPSTR/ WFLP invited talk

Laure Gonnord, University Lyon 1
& Laboratoire d’Informatique du Parallélisme

Lyon - France
http://laure.gonnord.org/pro

Sept 4th, 2018

http://laure.gonnord.org/pro

Compilation and Analysis for Software and

Hardware - Location

LIP:
Laboratoire
de l'Informatique du
Parallélisme

2 / 50

CASH: Topics - People

Optimized (software/hardware) compilation for HPC software
with data-intensive computations.
 Means: dataflow IR, static analyses, optimisations,
simulation.

Sequential
Program

Parallel
Program

H
P

C
A

p
p

lic
at

io
n

s Parallelism
Extraction Intermediate

Parallel
Representation

Code
Generation

Hardware
(FPGA)

Software
(CPU & accelerators)

Optimization

Dataflow Semantics

Analysis
Abstract

Interpretation

Simulation

Polyhedral
Model

Christophe Alias, Laure Gonnord, Matthieu Moy
http://www.ens-lyon.fr/LIP/CASH/

3 / 50

http://www.ens-lyon.fr/LIP/CASH/

Outline

Motivations
Static analyses, examples
Static analysis of software, how?

Abstract Interpretation 101

Abstract Interpretation for optimising compilers
Example 1: a scalable analysis for pointers
Example 2: array bound check elimination
Impact on compiler optimisation pathes

Conclusion

4 / 50

Software needs safety and performance

I Programs crash because of array out-of-bounds accesses,
complex pointer behaviour, . . .

5 / 50

• For safety-critical
systems . . .

• and general
purpose systems!

Software needs safety and performance

I Programs crash because of array out-of-bounds accesses,
complex pointer behaviour, . . .

5 / 50

• For safety-critical
systems . . .

• and general
purpose systems!

Software guarantees, how?

• Development processes: coding rules, . . .

• Testing: do not cover all cases.

• Proof assistants: expensive.

I Static analysis of programs.

6 / 50

Outline

Motivations
Static analyses, examples
Static analysis of software, how?

Abstract Interpretation 101

Abstract Interpretation for optimising compilers
Example 1: a scalable analysis for pointers
Example 2: array bound check elimination
Impact on compiler optimisation pathes

Conclusion

7 / 50

Goal: safety 1/2

Prove that (some) memory accesses are safe:

int main () {

int v[10];

v[0]=0;

return v[20];

}

3
7

I This program has an illegal array access.

8 / 50

Goal: safety 2/2

Prove program correctness/absence of functional bug:

void find_mini (int a[N], int l, int u){

unsigned int i=l;

int b=a[l]

while (i <= u){

if(a[i]<b) b=a[i] ;

i++ ;

}

// here b = min(a[l..u])

}

I This program finds the minimum of the sub-array.

9 / 50

Goal: performance 1/2

Enable loop parallelism:

void fill_array (char *p){

unsigned int i;

for (i=0; i<4; i++)

*(p + i) = 0 ;

for (i=4; i<8; i++)

*(p + i) = 2*i ;

}

Parallel
loops

p p+ 7
p+ 3 p+ 4

I The two regions do not overlap.

10 / 50

Goal: performance 2/2

Enable code motion:

void code_motion(int* p1 , int *p2, int *p){

// ...

while(p2 >p1){

a = *p;

*p2 = 4;

p2 --;

}

}

hoist!

I If p and p2 do not alias, then a=*p is invariant.
I Hoisting this instruction saves one load per loop.

11 / 50

Outline

Motivations
Static analyses, examples
Static analysis of software, how?

Abstract Interpretation 101

Abstract Interpretation for optimising compilers
Example 1: a scalable analysis for pointers
Example 2: array bound check elimination
Impact on compiler optimisation pathes

Conclusion

12 / 50

Proving non trivial properties of software

• Basic idea: software has mathematically defined
behaviour.

• Automatically prove properties.

Acceptable
Behaviours

Program

(verif) No crash

(compil) Optimisable

13 / 50

There is no free lunch
i.e. no magical static analyser. It is impossible to prove

interesting properties:
• automatically
• exactly
• on unbounded programs

I Abstract Interpretation = conservative approximations.

14 / 50

There is no free lunch
i.e. no magical static analyser. It is im possible to prove

interesting properties:
• automatically
• exactly with false positives!
• on unbounded programs

I Abstract Interpretation = conservative approximations.

14 / 50

Outline

Motivations
Static analyses, examples
Static analysis of software, how?

Abstract Interpretation 101

Abstract Interpretation for optimising compilers
Example 1: a scalable analysis for pointers
Example 2: array bound check elimination
Impact on compiler optimisation pathes

Conclusion

15 / 50

Computing (inductive) invariants

init

loop

end

x := 0

x ≥ 100

x ≤ 99

→ x++

I {x ∈ N, 0 ≤ x ≤ 100} is the most precise invariant in
control point loop.

16 / 50

Problems and solution

We want to:

• Compute infinite sets.

• In finite time.

I How?

• Approximate sets (abstract domains), compute in this
abstract world.

• Extrapolate (widening).

17 / 50

Main ingredient: abstract values
Idea: represent values of variables:

Rpc ∈ P(Nd)

by a finite computable superset R]
pc :

y

xxx

y y

I And compute such abstract values for each control point.
I How? mimic the program operations

Nd × pcs → Nd × pcs

by their abstract versions.

There is also this magical widening stuff, let’s forget it in this talk

18 / 50

Example (Pagai, Verimag)

see http://pagai.forge.imag.fr

19 / 50

http://pagai.forge.imag.fr

Other famous AI tools

• Frama-C: “Evolved Value Analysis”.

• Astree: originally designed for safety critical C Compiled
from Scade (synchronous programming).

• Polyspace (Mathworks).

20 / 50

Complexity in Abstract Interpretation

Classical abstract interpretation analyses:

• Information attached to (block , variables).

• A new information is computed after each statement.

• Abstract operations are sometimes costly.

I For the polyhedral abstract domain, the complexity is
3EXP.

21 / 50

Challenges in Abstract Interpretation

• Precision of the abstract domain.

• Thousands, millions of lines of code to analyze.

• Static analyzers and compilers are complex programs
(that also have bugs).

I Growing need for simple specialized analyses that scale

22 / 50

Credo: future of Abstract Intepretation

• Focus more on applicability, and less on expressivity.

• Scale and demonstrate that it scales.

• For general-purpose programs.

I and use techniques from other communities (optimization,
model-checking, logic, rewriting)

23 / 50

Outline

Motivations
Static analyses, examples
Static analysis of software, how?

Abstract Interpretation 101

Abstract Interpretation for optimising compilers
Example 1: a scalable analysis for pointers
Example 2: array bound check elimination
Impact on compiler optimisation pathes

Conclusion

24 / 50

Safe compilation?

• Correct-by-construction non-optimising compilers:
Lustre, Scade.

• Translation validation: specialized proof of the generated
code.

• Compcert.

I An evolution toward more trustable compilers. But what
about code optimisation?

25 / 50

Motivation

Classical analyses (and optimisation) inside (production)
compilers:

• Apart from classical dataflow algorithm, often syntactic.

• Usual abstract-interpretation based algorithms are too
costly.

• Expressive algorithms: rely on “high level information”.

I Need for safe and precise quasi linear-time algorithms at
low-level.

I Illustrations in the rest of the talk.

26 / 50

Motivation

Classical analyses (and optimisation) inside (production)
compilers:

• Apart from classical dataflow algorithm, often syntactic.

• Usual abstract-interpretation based algorithms are too
costly.

• Expressive algorithms: rely on “high level information”.

I Need for safe and precise quasi linear-time algorithms at
low-level.

I Illustrations in the rest of the talk.

26 / 50

Some contributions

• Abstract domains/iteration strategies for numerical
invariants [SAS11], [OOPSLA14].

• Applications to memory analysis [OOPSLA14], just in
time compilers [WST14].

• Pointer analysis with “sparse” abstract interpretation
[CGO16] [CGO17] [SCP17].

Collaborations with M. Maalej, F. Pereira and his team at UFMG, Brasil

27 / 50

Outline

Motivations
Static analyses, examples
Static analysis of software, how?

Abstract Interpretation 101

Abstract Interpretation for optimising compilers
Example 1: a scalable analysis for pointers
Example 2: array bound check elimination
Impact on compiler optimisation pathes

Conclusion

28 / 50

Less than information for pointers [CGO17,SCP17]

void partition(int *v, int N) {

int i, j, p, tmp;

p = v[N/2];

for (i = 0, j = N - 1;; i++, j--) {

while (v[i] < p) i++;

while (p < v[j]) j--;

if (i >= j)

break;

tmp = v[i];

v[i] = v[j];

v[j] = tmp;

}

}

v[i] = *(v+i)

... ...

v + i v + j

• Range information is not sufficient to disambiguate v[i]
and v[j].

• We need to propagate relational information.

29 / 50

Less than information for pointers [CGO17,SCP17]

void partition(int *v, int N) {

int i, j, p, tmp;

p = v[N/2];

for (i = 0, j = N - 1;; i++, j--) {

while (v[i] < p) i++;

while (p < v[j]) j--;

if (i >= j)

break;

tmp = v[i];

v[i] = v[j];

v[j] = tmp;

}

}

v[i] = *(v+i)

... ...

v + i v + j

• Range information is not sufficient to disambiguate v[i]
and v[j].

• We need to propagate relational information.

29 / 50

Our setting for scaling analyses

Classical abstract interpretation analyses:

• Information attached to (block , variable).

• A new information is computed after each statement.

Sparse analyses ⇒ Static Single Information (SSI)
Property [Ana99]:

• Attach information to variables.

• The information must be invariant throughout the live
range of the variable.

I A simple assignment breaks SSI!
I Work on suitable intermediate representations

30 / 50

Scaling analyses: program representation 1/2

Static Single Assignment (SSA) form: each variable is
defined/assigned once.

void partition(int *v, int N) {

int i, j, p, tmp;

p = v[N/2];

for (i = 0, j = N - 1;; i++, j--) {

while (v[i] < p) i++;

...

}

. . .
i = 0

. . .

. . .

. . .

i = i + 1 ...

...

I Sparse storage of value information (one value range per
variable name).

31 / 50

Scaling analyses: program representation 1/2

Static Single Assignment (SSA) form: each variable is
defined/assigned once.

void partition(int *v, int N) {

int i, j, p, tmp;

p = v[N/2];

for (i = 0, j = N - 1;; i++, j--) {

while (v[i] < p) i++;

...

}

. . .
i0 = 0
. . .

i3 = φ(i0, i1, i2)
. . .

i1 = i3 + 1 ...

...

I Sparse storage of value information (one value range per
variable name).

31 / 50

Scaling analyses: program representation 2/2

Within SSA form, tests information cannot be propagated!

void partition(int *v, int N) {

...

if (i >= j)

break;

tmp = v[i];

v[i] = v[j];

}

(i ≥ j)?

• iF = σ(i)
jF = σ(j)
vi = v + iF
tmp = ∗vi
vj = v + jF

∗vi = ∗vj
. . .

False

I i ≥ j is invariant nowhere.

I The σ renaming (e-SSA) enables to propagate “iF < jF”.

32 / 50

Scaling analyses: relational information

Recall the SSI setting:

• Information must be invariant throughout the live range
of the variable. 3

• Attach information to variables (and not blocks).

I Work on semi-relational domains, for instance:

• Parametric ranges [OOPSLA14] x 7→ [0,N + 1]

• Pentagons [LF10]: x 7→ {u, t} means u, t ≤ x .

33 / 50

Contributions on static analyses for pointers

(with Maroua Maalej) [CGO16, CGO17, SCP17]

• A new sequence of static analyses for pointers.

• Based on semi-relational sparse abstract domains:
• In CGO’16: p 7→ loc + [a, b].
• In CGO’17: adaptation of Pentagons.

• Implemented in LLVM.

• Used as oracles for a common pass called
AliasAnalysis.

• Experimental evaluation on classical benchmarks.

34 / 50

Experimental results [SCP17]

0 20 40 60 80 100
benchmarks sorted by size

102

103

104

105

106

107

108

109

#
pa

irs
 o

f p
oi

nt
er

s

total #pairs
basicaa (LLVM)
basicaa+sraa (SCP17)

• Comparison with LLVM basic alias analysis.
• Our sraa outperforms basicaa in the majority of the tests.
• The combination outperforms each of these analyses

separately in every one of the 100 programs.
35 / 50

Outline

Motivations
Static analyses, examples
Static analysis of software, how?

Abstract Interpretation 101

Abstract Interpretation for optimising compilers
Example 1: a scalable analysis for pointers
Example 2: array bound check elimination
Impact on compiler optimisation pathes

Conclusion

36 / 50

Contribution [OOPSLA’14]

• A technique to prove that (some) memory accesses are
safe :
• Less need for additional guards.
• Based on abstract interpretation.
• Precision and cost compromise.

• Implemented in LLVM-compiler infrastructure :
• Eliminate 50% of the guards inserted by AddressSanitizer
• SPEC CPU 2006 17% faster

37 / 50

A bit on sanitizing memory accesses

Different techniques : but all have an overhead.

Ex : Address Sanitizer

• Shadow every memory allocated : 1 byte → 1 bit
(allocated or not).

• Guard every array access : check if its shadow bit is valid.
I slows down SPEC CPU 2006 by 25%

I We want to remove these guards.

38 / 50

Green Arrays: a set of sparse analyses 1/2

39 / 50

Green Arrays: a set of sparse analyses 2/2

40 / 50

Experimental setup

41 / 50

Percentage of bound checks removed

42 / 50

Runtime improvement

43 / 50

Outline

Motivations
Static analyses, examples
Static analysis of software, how?

Abstract Interpretation 101

Abstract Interpretation for optimising compilers
Example 1: a scalable analysis for pointers
Example 2: array bound check elimination
Impact on compiler optimisation pathes

Conclusion

44 / 50

Some comments on the methodology

LLVM compiler:

• comes with a test infrastructure and benchmarks.

• analysis and optimisation passes log information.

• you can add your own pass, but where?

I Evaluating the impact of a given analysis is a nightmare!

45 / 50

Impact on LLVM code motion 1/2

Loop invariant code motion (LICM):

void code_motion(int* p1 , int *p2, int *p){

// ...

while(p2 >p1){

a = *p;

*p2 = 4;

p2 --;

}

}

hoist!

I If p and p2 do not alias, then a=*p is invariant.

46 / 50

Impact of our analyses (excerpt) 2/2

Program #Inst #moved
O3 O3+our analysis (CGO16)

fixoutput 369 1 5
compiler 3515 0 0
bison 15645 165 179
archie-client 5939 0 0
TimberWolfMC 98792 1287 1447
allroots 574 0 0
unix-smail 5435 3 3
plot2fig 3217 3 3
bc 10632 18 19
yacr2 6583 144 190
ks 1368 8 11
cfrac 7353 5 6
espresso 50751 301 398
gs 55281 20 X

More in Maroua Maalej’s thesis.

47 / 50

Outline

Motivations
Static analyses, examples
Static analysis of software, how?

Abstract Interpretation 101

Abstract Interpretation for optimising compilers
Example 1: a scalable analysis for pointers
Example 2: array bound check elimination
Impact on compiler optimisation pathes

Conclusion

48 / 50

Summary

Static analyses for compilers:

• Application domain: code optimisation.

• Adaptation of abstract interpretation algorithms inside
this particular context.

• Algorithmic and compilation techniques to scale.

• Future work: more relational domains (and data
structures).

49 / 50

Take home message

• Code optimisation are good applications for static
analyses/formal methods!

• They have to be thought in terms of scaling as well as
precision.

I Sparse analyses are the key but they still have to be
invented/redesigned.

50 / 50

References I
[ADFG10] Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord.

Multi-dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart
Programs.
In Proceedings of the 17th International Static Analysis Symposium (SAS’10), Perpignan, France,
September 2010.

[ADFG13] Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord.
Rank: a tool to check program termination and computational complexity.
In Workshop on Constraints in Software Testing Verification and Analysis (CSTVA’13),
Luxembourg, March 2013.

[Ana99] Scott Ananian.
The static single information form.
Master’s thesis, MIT, September 1999.

[Fea92] Paul Feautrier.
Some efficient solutions to the affine scheduling problem. part ii. multidimensional time.
International Journal of Parallel Programming, 21(6):389–420, Dec 1992.

[GMR15] Laure Gonnord, David Monniaux, and Gabriel Radanne.
Synthesis of ranking functions using extremal counterexamples.
In Proceedings of the 2015 ACM International Conference on Programming Languages, Design
and Implementation (PLDI’15), Portland, Oregon, United States, June 2015.

[LF10] Francesco Logozzo and Manuel Fähndrich.
Pentagons: A weakly relational abstract domain for the efficient validation of array accesses.
Sci. Comput. Program., 75(9):796–807, 2010.

[MPMQPG17] Maroua Maalej, Vitor Paisante, Fernando Magno Quintao Pereira, and Laure Gonnord.
Combining Range and Inequality Information for Pointer Disambiguation.
Science of Computer Programming, 2017.
Accepted in Oct 2017, final published version of https://hal.inria.fr/hal-01429777v2.

51 / 50

References II

[MPR+17] Maroua Maalej, Vitor Paisante, Pedro Ramos, Laure Gonnord, and Fernando Pereira.
Pointer Disambiguation via Strict Inequalities.
In International Symposium of Code Generation and Optimization (CGO’17), Austin, United
States, February 2017.

[PMB+16] Vitor Paisante, Maroua Maalej, Leonardo Barbosa, Laure Gonnord, and Fernando Magno Quintao
Pereira.
Symbolic Range Analysis of Pointers.
In International Symposium of Code Generation and Optimization (CGO’16), pages 791–809,
Barcelon, Spain, March 2016.

[SMO+14] Henrique Nazaré Willer Santos, Izabella Maffra, Leonardo Oliveira, Fernando Pereira, and Laure
Gonnord.
Validation of Memory Accesses Through Symbolic Analyses.
In Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages And Applications (OOPSLA’14), Portland, Oregon, United States, October
2014.

52 / 50

	Motivations
	Static analyses, examples
	Static analysis of software, how?

	Abstract Interpretation 101
	Abstract Interpretation for optimising compilers
	Example 1: a scalable analysis for pointers
	Example 2: array bound check elimination
	Impact on compiler optimisation pathes

	Conclusion
	Appendix

